0%

数组中的逆序对

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007

自左向右归并,数逆序数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class Solution
{
public:
vector<int>::iterator it;
int InversePairs(vector<int> &data)
{
it = data.begin();
if (data.empty())
{
return 0;
}
vector<int> temp(data);
return merge_sort(data.begin(), data.end(), temp.begin());
}
int merge_sort(const vector<int>::iterator data_begin, const vector<int>::iterator data_end, const vector<int>::iterator temp_begin)
{
int data_len = data_end - data_begin;
if (data_len < 2)
{
return 0;
}
int mid_len = (data_len + 1) >> 1;
auto data_mid = data_begin + mid_len, temp_mid = temp_begin + mid_len, temp_end = temp_begin + data_len;
long long pair_counter = merge_sort(temp_begin, temp_mid, data_begin) + merge_sort(temp_mid, temp_end, data_mid), current_counter = 0;
auto left = data_mid - 1, right = data_end - 1;
for (auto dst = temp_end - 1; left >= data_begin && right >= data_mid; dst--)
{
if (*left > *right)
{
*dst = *left;
current_counter += right - data_mid + 1;
left--;
}
else
{
*dst = *right;
right--;
}
}
if (left >= data_begin)
{
copy(data_begin, left + 1, temp_begin);
}
else if (right >= data_mid)
{
copy(data_mid, right + 1, temp_begin);
}
return (pair_counter + current_counter) % 1000000007;
}
};